Abstract

In order to reduce the Cyrtotrachelus buqueti population, which is a serious pest in the bamboo industry, a range of approaches is required, which will be dependent on diverse gene expression influenced by environmental factors. In this study, samples from two regions of China, Muchuan in Sichuan Province and Chishui in Guizhou Province, were investigated through RNA-seq. Approximately 44 million high-quality reads were generated and 94.2% of the data was mapped to the transcriptome. A total of 15,641 out of the 29,406 identified genes were predicted. Moreover, 348 genes were differentially expressed between the two groups of imagoes (77 upregulated and 271 downregulated). The functional analysis showed that these genes were significantly enriched in the ribosome and metabolic pathway categories. The candidate genes contributing to the reduction in C. buqueti included 41 genes involved in the ribosome constitution category, five in the one‑carbon pool pathway by folate category, and five heat shock protein genes. The downregulation of these candidate genes seems to have impaired metabolic processes, such as protein, DNA, RNA, and purine synthesis, as well as carbon and folate metabolism, subsequently resulting in the observed population reduction of C. buqueti. Furthermore, temperature, heavy metal content, and pH might influence the population by altering the expressions of genes involved in these metabolic processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.