Abstract

BackgroundThe pattern of gene transcripts in the yeast Saccharomyces cerevisiae is strongly affected by the presence of glucose. An increased activity of protein kinase A (PKA), triggered by a rise in the intracellular concentration of cAMP, can account for many of the effects of glucose on transcription. In S. cerevisiae three genes, TPK1, TPK2, and TPK3, encode catalytic subunits of PKA. The lack of viability of tpk1 tpk2 tpk3 triple mutants may be suppressed by mutations such as yak1 or msn2/msn4. To investigate the requirement for PKA in glucose control of gene expression, we have compared the effects of glucose on global transcription in a wild-type strain and in two strains devoid of PKA activity, tpk1 tpk2 tpk3 yak1 and tpk1 tpk2 tpk3 msn2 msn4.ResultsWe have identified different classes of genes that can be induced -or repressed- by glucose in the absence of PKA. Representative examples are genes required for glucose utilization and genes involved in the metabolism of other carbon sources, respectively. Among the genes responding to glucose in strains devoid of PKA some are also controlled by a redundant signalling pathway involving PKA activation, while others are not affected when PKA is activated through an increase in cAMP concentration. On the other hand, among genes that do not respond to glucose in the absence of PKA, some give a full response to increased cAMP levels, even in the absence of glucose, while others appear to require the cooperation of different signalling pathways. We show also that, for a number of genes controlled by glucose through a PKA-dependent pathway, the changes in mRNA levels are transient. We found that, in cells grown in gluconeogenic conditions, expression of a small number of genes, mainly connected with the response to stress, is reduced in the strains lacking PKA.ConclusionsIn S. cerevisiae, the transcriptional responses to glucose are triggered by a variety of pathways, alone or in combination, in which PKA is often involved. Redundant signalling pathways confer a greater robustness to the response to glucose, while cooperative pathways provide a greater flexibility.

Highlights

  • The pattern of gene transcripts in the yeast Saccharomyces cerevisiae is strongly affected by the presence of glucose

  • Even when galactose metabolism in such a strain is blocked by disruption of the GAL1 gene, the increase in cAMP levels that follows galactose addition causes many of the effects on transcription that are elicited by glucose [5]

  • Genes induced by glucose When ethanol-grown cultures of the TPK1 TPK2 TPK3 reference strain were exposed to glucose over 700

Read more

Summary

Introduction

The pattern of gene transcripts in the yeast Saccharomyces cerevisiae is strongly affected by the presence of glucose. Even when galactose metabolism in such a strain is blocked by disruption of the GAL1 gene (encoding galactokinase), the increase in cAMP levels that follows galactose addition causes many of the effects on transcription that are elicited by glucose [5]. The same authors report that in a bcy strain, where PKA activity is independent of cAMP levels, transcription of many genes still responds to the presence of glucose. This last observation suggests that there are additional, and possibly redundant, glucose signalling pathway(s) independent of changes in PKA activity triggered by cAMP [5]. This does not, discard the possibility that the alternative pathway(s) require a basal activity of PKA, even if they do not depend on its activation by cAMP

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.