Abstract

We report here the transcriptional profiling of the cell cycle on a genome-wide scale in human fibroblasts. We identified approximately 700 genes that display transcriptional fluctuation with a periodicity consistent with that of the cell cycle. Systematic analysis of these genes revealed functional organization within groups of coregulated transcripts. A diverse set of cytoskeletal reorganization genes exhibit cell-cycle-dependent regulation, indicating that biological pathways are redirected for the execution of cell division. Many genes involved in cell motility and remodeling of the extracellular matrix are expressed predominantly in M phase, indicating a mechanism for balancing proliferative and invasive cellular behavior. Transcripts upregulated during S phase displayed extensive overlap with genes induced by DNA damage; cell-cycle-regulated transcripts may therefore constitute coherent programs used in response to external stimuli. Our data also provide clues to biological function for hundreds of previously uncharacterized human genes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.