Abstract

Grazing, as an important land use method in grassland, has a significant impact on the morphological and physiological traits of plants. However, little is known about how the molecular mechanism of plant responds to different grazing intensities. Here, we investigated the response of Taraxacum mongolicum to light grazing and heavy grazing intensities in comparison with a non-grazing control. Using de novo transcriptome assembly, T. mongolicum leaves were compared for the expression of the different genes under different grazing intensities in natural grassland. In total, 194,253 transcripts were de novo assembled and comprised in nine leaf tissues. Among them, 11,134 and 9058 genes were differentially expressed in light grazing and heavy grazing grassland separately, with 5867 genes that were identified as co-expression genes in two grazing treatments. The Nr, SwissProt, String, GO, KEGG, and COG analyses by BLASTx searches were performed to determine and further understand the biological functions of those differentially expressed genes (DEGs). Analysis of the expression patterns of 10 DEGs by quantitative real-time RT-PCR (qRT-PCR) confirmed the accuracy of the RNA-Seq results. Based on a comparative transcriptome analysis, the most significant transcriptomic changes that were observed under grazing intensity were related to plant hormone and signal transduction pathways, carbohydrate and secondary metabolism, and photosynthesis. In addition, heavy grazing resulted in a stronger transcriptomic response compared with light grazing through increasing the of the secondary metabolism- and photosynthesis-related genes. These changes in key pathways and related genes suggest that they may synergistically respond to grazing to increase the resilience and stress tolerance of T. mongolicum. Our findings provide important clues for improving grassland use and protection and understanding the molecular mechanisms of plant response to grazing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.