Abstract

In M13mp2 lacZα forward mutation assays measuring intrinsic fidelity of DNA-dependent DNA synthesis, wild-type human immunodeficiency virus type 1 (HIV-1) RTs of group M/subtype B previously showed >10-fold higher error rates than murine leukaemia virus (MLV) and avian myeloblastosis virus (AMV) RTs. An adapted version of the assay was used to obtain error rates of RNA-dependent DNA synthesis for several RTs, including wild-type HIV-1BH10, HIV-1ESP49, AMV and MLV RTs, and the high-fidelity mutants of HIV-1ESP49 RT K65R and K65R/V75I. Our results showed that there were less than two-fold differences in fidelity between the studied RTs with error rates ranging within 2.5 × 10−5 and 3.5 × 10−5. These results were consistent with the existence of a transcriptional inaccuracy threshold, generated by the RNA polymerase while synthesizing the RNA template used in the assay. A modest but consistent reduction of the inaccuracy threshold was achieved by lowering the pH and Mg2+ concentration of the transcription reaction. Despite assay limitations, we conclude that HIV-1BH10 and HIV-1ESP49 RTs are less accurate when copying DNA templates than RNA templates. Analysis of the RNA-dependent mutational spectra revealed a higher tendency to introduce large deletions at the initiation of reverse transcription by all HIV-1 RTs except the double-mutant K65R/V75I.

Highlights

  • Synthesis for several reverse transcriptase (RT), including wild-type HIV-1BH10, HIV-1ESP49, avian myeloblastosis virus (AMV) and murine leukaemia virus (MLV) RTs, and the highfidelity mutants of HIV-1ESP49 RT K65R and K65R/V75I

  • RTs play a fundamental role behind these developments, and wild-type (WT) and engineered RT variants of avian myeloblastosis virus (AMV), murine leukaemia virus (MLV), human immunodeficiency virus type 1 (HIV-1) and Geobacillus stearothermophilus group II introns have been developed into more efficient tools to study gene expression by increasing catalytic efficiency, processivity, thermostability or fidelity of DNA synthesis[6,7,8,9]

  • A commercial T7 RNA polymerase (RNAP) was used to synthesize a lacZα RNA template that was reverse transcribed by retroviral RTs

Read more

Summary

Results

Fidelity of RNA-dependent DNA synthesis of retroviral RTs. M13mp[2] lacZα forward mutation assays provide a broad estimate of the fidelity of RTs, based on a relatively large number of mutational sites and sequence contexts, silent mutations cannot be detected by using this method. We determined mutant frequencies and error rates of RNA-dependent DNA synthesis for WT MLV, AMV, HIV-1BH10 and HIV-1ESP49 RTs, as well as mutant RTs O_K65R and O_K65R/V75I For this purpose, a commercial T7 RNA polymerase (RNAP) was used to synthesize a lacZα RNA template that was reverse transcribed by retroviral RTs (the method is outlined in the Supplementary Fig. S1). Reactions were carried out at different pH and Mg2+ concentrations, either in the presence of all four NTPs or with biased NTP pools (i.e. lacking or with a very low concentration of one ribonucleotide) (Supplementary Fig. S8) In this assay, when all NTPs were present (lanes marked with an asterisk), the polymerase synthesized an RNA of 53 nucleotides.

No of errors Error rate
Mutant frequency
Discussion
Additional Information
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.