Abstract

Large-scale gene dose reductions usually lead to abnormal phenotypes or death. However, male mammals, Drosophila, and Caenorhabditis elegans have only one X chromosome and thus can be considered as monosomic for a major chromosome. Despite the deleterious effects brought about by such gene dose reduction in the case of an autosome, X chromosome monosomy in males is natural and innocuous. This is because of the nearly full transcriptional compensation for X chromosome genes in males, as opposed to no or partial transcriptional compensation for autosomal one-dose genes arising due to deletions. Buffering, the passive absorption of disturbance due to enzyme kinetics, and feedback responses triggered by expression change contribute to partial compensation. Feed-forward mechanisms, which are active responses to genes being located on the X, rather than actual gene dose are important contributors to full X chromosome compensation. In the last decade, high-throughput techniques have provided us with the tools to effectively and quantitatively measure the small-fold transcriptional effects of dose reduction. This is leading to a better understanding of compensatory mechanisms.

Highlights

  • Large-scale gene dose reductions usually lead to abnormal phenotypes or death

  • The common feature is that X chromosome expression relative to autosomes is maintained in both sexes

  • X chromosome dosage compensation is often stated as a way to balance gene expression between the sexes, but it is genic balance within a sex that must be rigorously regulated

Read more

Summary

Conclusions

There is full compensation for the one-dose X-linked genes in males, while there is generally only partial compensation for one-dose genes on the autosomes of either sex. Buffering and feedback mechanisms may underlie the partial compensation, while a feed-forward mechanism is involved in the full compensation of X-linked genes in wild-type males. This hypothesis is supported by evidence from Drosophila, the most well-studied model for dosage compensation. Most systematic studies for dose response focus on autosomal genes It is still not clear whether genes on different genomic location would have different dose response. A systematic comparison between the responses of one-dose X-linked genes and one-dose autosomal genes in homogametic sex will provide us with deeper understanding of compensatory mechanisms.

30. Henikoff S
Findings
55. Charlesworth B
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call