Abstract

Cuticle barrier efficiency in insects depends largely on cuticular lipids. To learn about the evolution of cuticle barrier function, we compared the basic properties of the cuticle inward and outward barrier function in adults of the fruit flies Drosophila suzukii and Drosophila melanogaster that live on fruits sharing a similar habitat. At low air humidity, D. suzukii flies desiccate faster than D. melanogaster flies. We observed a general trend indicating that in this respect males are less robust than females in both species. Xenobiotics penetration occurs at lower temperatures in D. suzukii than in D. melanogaster. Likewise, D. suzukii flies are more susceptible to contact insecticides than D. melanogaster flies. Thus, both the inward and outward barriers of D. suzukii are less efficient. Consistently, D. suzukii flies have less cuticular hydrocarbons (CHC) that participate as key components of the cuticle barrier. Especially, the relative amounts of branched and desaturated CHCs, known to enhance desiccation resistance, show reduced levels in D. suzukii. Moreover, the expression of snustorr (snu) that encodes an ABC transporter involved in barrier construction and CHC externalization, is strongly suppressed in D. suzukii. Hence, species-specific genetic programs regulate the quality of the lipid-based cuticle barrier in these two Drosophilae. Together, we conclude that the weaker inward and outward barriers of D. suzukii may be partly explained by differences in CHC composition and by a reduced Snu-dependent transport rate of CHCs to the surface. In turn, this suggests that snu is an ecologically adjustable and therefore relevant gene in cuticle barrier efficiency.

Highlights

  • Fruit flies of the genus Drosophila including Drosophila, Sophophora, and Hawaiian Drosophila (O’Grady and DeSalle, 2018b) commonly live on fruits that serve as a site for feeding, mating, oviposition, and development

  • D. suzukii males were dead within 4 h after exposing them to dry conditions, while most D. melanogaster males survived until 5 h of exposition to dryness

  • We found that D. suzukii flies have less cuticular hydrocarbons (CHC) on their surface than D. melanogaster flies suggesting that the CHC-based barrier is weaker in D. suzukii

Read more

Summary

Introduction

Fruit flies of the genus Drosophila including Drosophila, Sophophora, and Hawaiian Drosophila (O’Grady and DeSalle, 2018b) commonly live on fruits that serve as a site for feeding, mating, oviposition, and development. Cuticle Barrier in Two Drosophilae other in time and space (Mitsui et al, 2006; Beltrami et al, 2012; O’Grady and DeSalle, 2018a; Plantamp et al, 2019) Some species such as Drosophila suzukii prefer, for instance, immature fruits (Lee et al, 2011; Walsh et al, 2011; Silva-Soares et al, 2017; Olazcuaga et al, 2019), while others like Drosophila melanogaster prefer rotten fruits (Versace et al, 2016). The differences in desiccation resistance between the closely related East-Australian Drosophila birchii and Drosophila serrata, for instance, rely on the composition of cuticular hydrocarbons (CHCs) that serve as a barrier at the cuticle surface (Chung et al, 2014). Reduced methyl-branched CHCs may explain why D. birchii is more sensitive to desiccation than D. serrata

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.