Abstract
ObjectiveThis study aimed to identify genes and signaling pathways associated with acute cartilage injury using RNA sequencing (RNA-seq).MethodsKnee joint cartilage samples were collected from normal mice and 2 models of acute cartilage injury (non-invasive and groove models) within an 8-hour time limit. RNA-seq revealed differential gene expression between the injury models and controls, with subsequent validation using real-time quantitative polymerase chain reaction (RT-qPCR) for 9 representative genes.ResultsCompared to controls, the non-invasive model showed 36 differentially expressed genes (DEGs) (13 up-regulated, 23 down-regulated), with Gm14648 and Gm35438 showing the most significant upregulation and downregulation, respectively. The groove model exhibited 255 DEGs (13 up-regulated, 23 down-regulated), with Gm14648 and Gm35438 showing the (222 up-regulated, 33 down-regulated). Six overlapping genes were identified between the non-invasive and groove models, including up-regulated genes (Igfn1, Muc6, Hmox1) and down-regulated genes (Pthlh, Cyp1a1, Gm13490), validated by RT-qPCR. Gene ontology (GO) analysis highlighted involvement in environmental information processing and cartilage organ system function, while Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis implicated the JAK-STAT signaling pathway. RT-qPCR and immunohistochemistry confirmed downregulation of Fhl1 in the non-invasive model, supported by Western blotting of p-JAK2/t-JAK2 levels.ConclusionsThis study identifies DEGs (13 up-regulated, 23 down-regulated), with Gm14648 and Gm35438 showing the in acute cartilage injury, suggesting potential therapeutic targets. The role of Fhl1 in cartilage protection via the JAK-STAT pathway warrants further investigation in acute cartilage injury research.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have