Abstract

The Myc protein binds to and transactivates the expression of genes via E-box elements containing a central CAC(G/A)TG sequence. The transcriptional activation function of Myc is required for its ability to induce cell cycle progression, cellular transformation and apoptosis. Here we show that transactivation by Myc is under negative control by the transcription factor AP-2. AP-2 inhibits transactivation by Myc via two distinct mechanisms. First, high affinity binding sites for AP-2 overlap Myc-response elements in two bona fide target genes of Myc, prothymosin-alpha and ornithine decarboxylase. On these sites, AP-2 competes for binding of either Myc/Max heterodimers or Max/Max homodimers. The second mechanism involves a specific interaction between C-terminal domains of AP-2 and the BR/HLH/LZ domain of Myc, but not Max or Mad. Binding of AP-2 to Myc does not preclude association of Myc with Max, but impairs DNA binding of the Myc/Max complex and inhibits transactivation by Myc even in the absence of an overlapping AP-2 binding site. Taken together, our data suggest that AP-2 acts as a negative regulator of transactivation by Myc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.