Abstract

Recently, we reported on our observation that diffuse infrared (IR) light transmitted through human skull bone exhibits an intensity that correlates positively with acoustic (1 MHz) time-of-flight data acquired at equivalent locations [POMA 22, 020002 (2015)]. Presently, we investigate the potential to exploit this correlation as a means of correcting for skull-induced aberration. For measurement, a dual ultrasonic/infrared array capable of illuminating a localized region of the skull bone and recording the backscattered light was constructed. The array design utilized 940 nm IR emitters (TSAL4400, 3-mm-diameter) and a single detector (TEFD4300-3 mm) configured to transmit and record under the face of an ultrasonic PZT ring transducer. Initial tests consisted of a three-emitter configuration, with fiberglass-reinforced foil used to isolate the direct infrared signal between the emitters and the receiver. Effects of skin were considered by attaching a skin-mimicking layer to the skull and comparing results with and without the layer. Data acquired on a set of eight skull samples will be presented. Preliminary results show good correlation between ultrasound and IR intensity. [Work supported by NIH award R01EB014296.] Posters will be on display and contributors will be at their posters during the session break from 2:40 p.m. to 3:05 p.m.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.