Abstract

Transcranial magnetic stimulation (TMS) is a non-invasive, safe, effective, and food and drug administration approved treatment for major depressive disorder. TMS relies on time-varying magnetic fields to induce an electric field in the brain, resulting in depolarization or hyperpolarization of the neurons. Recently, there has been extensive research to improve the magnetic coil design, effectiveness of TMS treatment, and improvement in the computer modeling of human brains, yet little development is reported on the TMS pulse generators and coil design for small animals. TMS pulse generators, or stimulators, are the circuits which provides pulse current to drive the inductive coils (TMS coils), used to generate time-varying magnetic fields. Commercial TMS stimulators are expensive and have limitations of using standard and non-customizable coils. These stimulators do not support small inductive loads, which require high-current capabilities. Furthermore, the commercial animal coil stimulates the entire body of a mouse, as they are designed for large animals. In this paper, the authors present the design of a small sized TMS stimulator and a focused coil for the application on small animals such as mice. The proposed TMS stimulator will have the potential of handling small inductive loads enabling stimulation of specific regions within the mouse brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.