Abstract

In decerebrate, unanesthetized cats, the brain stem was longitudinally cut at the midline from its dorsal to ventral surface with the cerebellum kept intact, eliminating neural interactions between the bilateral vestibular nuclei through the brain stem. Extracellular spike potentials of vestibular type I neurons identified by horizontal rotation were distinctly inhibited by contralateral vestibular nerve stimulation. This crossed inhibition was abolished by removal of the medial part of the cerebellum, indicating that the inhibition was mediated through the cerebellum. Neither aspiration of the flocculus on the recording side nor intravenous administration of picrotoxin eliminated transcerebellar crossed inhibition, suggesting that it is mediated through the cerebellar nuclei. When the fastigial, interposite and dentate nuclei were stimulated, inhibition of vestibular type I neurons was produced only from the contralateral fastigal nucleus. Cerebellocortical stimulation which inhibited fastigial type I neurons suppressed transcerebellar crossed inhibition. Effective sites for suppression of transcerebellar crossed inhibition were localized to lobules VI and VIIa in the vermal cortex on the side of labyrinthine stimulation. Intracellular recordings were made from type I neurons in the medial vestibular nucleus. Stimulation of the contralateral vestibular nerve and the contralateral fastigial nucleus produced IPSPs in these neurons with the shortest latency of 3.8 msec and 1.8 msec, respectively. The difference between these two latency values approximates the shortest latency of spike initiation of fastigial type I neurons in response to vestibular nerve stimulation. It is postulated that transcerebellar crossed inhibition is mediated through the fastigial nucleus on the side of labyrinthine stimulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.