Abstract

Geldanamycin is an antitumor drug that binds HSP90 and induces a wide range of heat shock proteins, including HSP70s. In this study we report that the induction of HSP70s is dose-dependent in geldanamycin-treated human non-small cell lung cancer H460 cells. Analysis of the induction of HSP70s specific isoform using LC-ESI-MS/MS analysis and Northern blotting showed that HSP70-1/2 are the major inducible forms under geldanamycin treatment. Transactivation of hsp70-1/2 was determined by electrophoretic mobility-shift assay using heat shock element (HSE) as a probe. The signaling pathway mediators involved in hsp70-1/2 transactivation were screened by the kinase inhibitor scanning technique. Pretreatment with serine/threonine protein kinase inhibitors H7 or H8 blocked geldanamycin-induced HSP70-1/2, whereas protein kinase A inhibitor HA1004, protein kinase G inhibitor KT5823, and myosin light chain kinase inhibitor ML-7 had no effect. Furthermore, the protein kinase C (PKC)-specific inhibitor Ro-31-8425 and the Ca2+-dependent PKC inhibitor Gö-6976 diminished geldanamycin-induced HSP70-1/2, suggesting an involvement of the PKC in the process. In addition, geldanamycin treatment causes a transient increase of intracellular Ca2+. Chelating intracellular Ca2+ with BAPTA-AM or depletion of intracellular Ca2+ store with A23187 or thapsigargin significantly decreased geldanamycin-transactivated HSP70-1/2 expression. Taken together, our results demonstrate that geldanamycin-induced specific HSP70-1/2 isoforms expression in H460 cells through signaling pathway mediated by Ca2+ and PKC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.