Abstract

Intake of trans fatty acids (TFA), which are consumed by eating foods made from partially hydrogenated vegetable oils, is associated with a higher risk of cardiovascular disease. This relation can be explained by many factors including TFA's negative effect on endothelial function and reduced nitric oxide (NO) bioavailability. In this study we investigated the effects of three different TFA (2 common isomers of C18 found in partially hydrogenated vegetable oil and a C18 isomer found from ruminant-derived—dairy products and meat) on endothelial NF-κB activation and nitric oxide (NO) production. Human endothelial cells were treated with increasing concentrations of Elaidic (trans-C18:1 (9 trans)), Linoelaidic (trans-C18:2 (9 trans, 12 trans)), and Transvaccenic (trans-C18:1 (11 trans)) for 3 h. Both Elaidic and Linoelaidic acids were associated with increasing NF-κB activation as measured by IL-6 levels and phosphorylation of IκBα, and impairment of endothelial insulin signaling and NO production, whereas Transvaccenic acid was not associated with these responses. We also measured superoxide production, which has been hypothesized to be necessary in fatty acid-dependent activation of NF-κB. Both Elaidic acid and Linoelaidic acid are associated with increased superoxide production, whereas Transvaccenic acid (which did not induce inflammatory responses) did not increase superoxide production. We observed differential activation of endothelial superoxide production, NF-κB activation, and reduction in NO production by different C18 isomers suggesting that the location and number of trans double bonds effect endothelial NF-κB activation.

Highlights

  • Trans fatty acids (TFA) include monounsaturated fatty acids or polyunsaturated fatty acids that contain at least one carbon-carbon trans double bond

  • Effect of trans fats on endothelial insulin signaling We have previously shown that in endothelial cells, palmitatemediated activation of NF-kB signaling is associated with reduced insulin-mediated Akt and Endothelial nitric oxide synthase (eNOS) signaling in endothelial cells [16]

  • In this study we examined three TFA for their ability to activate endothelial NF-kB and subsequently reduce nitric oxide (NO) production

Read more

Summary

Introduction

Trans fatty acids (TFA) include monounsaturated fatty acids or polyunsaturated fatty acids that contain at least one carbon-carbon trans double bond. Most of the dietary TFA are derived from partial hydrogenation of vegetables oil or from ruminant-derived foods (dairy products and meat). TFA are widely used by the food industry in the generation of baked goods, deep-fried foods, and packaged snacks. It is estimated that TFA contribute up to 4–12% of total dietary fat intake in the US population [1]. During the past 20 years, epidemiologic studies have identified consumption of TFA as an important modifiable risk factor in the development of cardiovascular disease [2,3]. The use and presence of TFA in the diet has been the object of much public health discussions

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.