Abstract

Abstract Using density functional theory, we investigated trilayer in-plane heterostructures consisting of graphene and hBN strips in terms of their interlayer stacking arrangements. The trilayer hBN/graphene superlattices possess flat dispersion bands at their band edges, the wave function distribution of which strongly depends on the interlayer stacking arrangement. The wave functions of the valence and conduction band edges of the trilayer heterostructure with AA’ stacking are distributed throughout the layers implying a two-dimensional carrier distribution. In contrast, we found one-dimensional carrier channels along the border between graphene and hBN for electrons and holes in the trilayer heterosheet with rhombohedral interlayer stacking. These unique carrier distributions are ascribed to the interlayer dipole moment arising from asymmetric arrangements of B and N atoms across the layers. Therefore, the trilayer in-plane heterostructures of graphene and hBN superlattice possess trans-dimensional carriers in terms of their interlayer stacking arrangement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.