Abstract

BackgroundTrans-cinnamaldehyde (TCA) is a main compound of Cinnamomum cassia, used in traditional Chinese medicine to treat many ailments. Increasing evidence has demonstrated the therapeutic effects of TCA in cardiovascular diseases. PurposeThe present study aimed to determine whether TCA exerts antihypertrophic effects in vitro and in vivo and to elucidate the underlying mechanisms of these effects. MethodsNeonatal rat cardiac myocytes (NRCMs) and adult mouse cardiac myocytes (AMCMs) were treated with 50 μΜ phenylephrine (PE) for 48 h. Tubulin detyrosination, store-operated Ca2+ entry (SOCE), stromal interaction molecule-1 (STIM1)/Orai1 translocation, and calcineurin/nuclear factor of activated T-cells (NFAT) signaling pathways were analyzed in NRCMs. Meanwhile, tubulin detyrosination, junctophilin-2, T-tubule distribution pattern, Ca2+ handling, and sarcomere shortening were observed in AMCMs. Male C57BL/6 mice were stimulated with PE (70 mg/kg per day) with or without TCA treatment for 2 weeks. Cardiac hypertrophy and tubulin detyrosination were also assessed. ResultsTCA was confirmed to alleviate cardiac hypertrophy induced by PE stimulation in vitro and in vivo. PE-induced cardiac hypertrophy was associated with excessive tubulin detyrosination and overexpression of vasohibin 1 (VASH1) and small vasohibin binding protein (SVBP), two key proteins responsible for tubulin detyrosination. These effects were largely blocked by TCA administration. PE treatment also enhanced SOCE with massive translocation of STIM1 and Orai1, Ca2+ mishandling, reduced sarcomere shortening, junctophilin-2, and T-tubule redistribution, all of which were significantly ameliorated by TCA administration. ConclusionOur study indicated that the therapeutic effects of TCA against cardiac hypertrophy may be associated with its ability to reduce tubulin detyrosination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.