Abstract
1. Tranilast, first developed as an anti-allergic drug, has been reported to inhibit vascular endothelial growth factor (VEGF)-induced angiogenesis and vasopermeability. To further clarify the inhibitory mechanism, we investigated the effects of tranilast on VEGF binding and subsequent intracellular signalling pathway linked to angiogenic activities and gene expression of bovine retinal microcapillary endothelial cells. 2. Tranilast significantly (P<0.01) inhibited VEGF, basic fibroblast growth factor (bFGF), and hypoxia conditioned media-induced BREC proliferation in a dose dependent manner with IC50's of 22, 82 and 10 microM, respectively. 3. VEGF-induced migration was also inhibited by tranilast in a dose dependent manner, with IC50 of 18 microM, and complete inhibition was observed at 300 microM (P<0.01). Tranilast suppressed VEGF-induced tube formation in a dose dependent manner with maximum (46%) inhibition observed at 300 microM (P<0.05). 4. Tranilast inhibited phorbol myristate acetate (PMA)-dependent stimulation of [3H]-thymidine incorporation and VEGF- and PMA-induced gene expression of integrin alpha v and c-fos in BREC. 5. Tranilast suppressed VEGF- and PMA-stimulated PKC activity in BREC. 6. Tranilast did not affect VEGF binding or VEGF-induced phosphorylation of tyrosine residues of VEGF receptor- and phospholipase Cgamma and their associated proteins. 7. These data suggest that tranilast might prove an effective inhibitor to prevent retinal neovascularization in ischaemic retinal diseases, and that its inhibitory effect might be through suppression of PKC-dependent signal transduction in BREC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.