Abstract

Time-resolved area normalized emission spectroscopy (TRANES) is a new method for the analysis of fluorescence of dyes in complex chemical and biological systems (A S R Koti, M M G Krishna and N Periasamy, 2001,J. Phys. Chem. 105, 1767). The model-free method extends the power of time-resolved emission spectroscopy (TRES) analysis and removes the ambiguity in the interpretation when the emission spectrum is time-dependent. Observation of an isoemissive point in TRANES analysis of fluorescence is an unambiguous indication for the presence of two emissive species in the sample. The isoemissive point occurs at a wavelength where the ratio of the radiative rates of the two species is equal to the ratio of their total radiative rates. The polarity-sensitive nile red dye shows time-dependent emission spectra in the organized bilayer assemblies of TX micelle and bilayer egg-phosphotidylcholine (egg-PC) membrane. Time-dependent spectra in complex systems support many important models (solvation model and heterogeneity in the ground and/or excited state). TRANES analysis shows that the fluorescence emission of nile red in TX micelle and egg-PC membrane is due to two emissive species solubilized in different sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.