Abstract
This paper presents the design and development of a Neural Netwwork-Adaptive backstepping (NN-Adaptive backstepping) controller to track the trajectory of a differentially controlled mobile robot. The controller is designed based on the robot dynamics equation and on the basis of the Backstepping controller. The effectiveness of the proposed controller is verified by simulation on different trajectories and compared with the backstepping controller. Model results The simulation shows that the proposed controller achieves quality better than the Backstepping controller in different trajectories. The tracking performance of the NN-Adaptive backstepping controller compared to the Backstepping controller is clearly improved (performance improved by over 52%), which means that the proposed controller trajectory error output will decrease by this percentage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.