Abstract

This brief mainly considers trajectory tracking and vibration suppression for a 3-D flexible wing. The dynamical model of the flexible wing is regarded as a distributed parameter system, which is described by partial differential equations and ordinary differential equations. A control strategy regulates the flexible wing to track the desired trajectory by controlling two angles. Meanwhile, two active boundary controllers are proposed to restrain the vibrations both in bending and twisting. By using Lyapunov’s direct method, the stability of the flexible wing system can be ensured. Numerical simulations based on the finite-difference method demonstrate the effectiveness of the proposed control schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.