Abstract

The ubiquitousness of GPS sensors in smart-phones, vehicles and wearable devices has enabled the collection of massive volumes of trajectory data from tracing moving objects. Consequently, an unprecedented scale of timestamped GPS data has been generated and posed an urgent demand for an effective storage mechanism for trajectory databases. The mainstream compression technique is called trajectory simplification, that finds a subsequence to approximate the original trajectory and attempts to minimize the information loss under a distance measure. Even though various simplification algorithms have been proposed in the past decades, there still lacks a thorough comparison to cover all the state-of-the-art algorithms and evaluate their quality using datasets in diversified motion patterns. Hence, it still remains a challenge for GPS data collectors to determine a proper algorithm in a concrete application. In addition, almost the entire line of previous methods uses error-based metrics to evaluate the compression quality, while ignoring their usability in supporting spatio-temporal queries on top of the reduced database. To bridge these gaps, we conduct so far the most comprehensive evaluation on trajectory simplification techniques. We compare the performance of 25 algorithms in total using five real datasets in different motion patterns. According to the experimental findings, we present useful guidance for the selection or development of effective trajectory simplification algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.