Abstract

The trajectory control of autonomous vehicles is an area which has attracted much research recently because it can prevent accidents caused by driver errors and significantly improve road capacity. Overtaking is one of the most complex and challenging manoeuvres for road vehicles and the autonomous control of the vehicle during this manoeuvre can greatly improve vehicle safety. As the innovative four-wheel independent steering (4WIS) and four-wheel independent driving (4WID) electric vehicle can provide redundant control actuators, this study focuses on utilising 4WIS–4WID techniques and vehicle dynamics control to achieve better control of autonomous vehicles. This study first introduces the traditional two-wheel proportional–integral–derivative (PID) steering control and two-wheel sliding mode controller (SMC) driving control for autonomous vehicle control. Then based on these, the four-wheel PID steering controller and four-wheel SMC steering controller are proposed. A four-wheel SMC driving controller and a four-wheel combined yaw rate and longitudinal velocity SMC driving controller are also proposed. Simulation results prove that the best control performance can be achieved when the four-wheel SMC steering controller and four-wheel combined yaw rate and longitudinal velocity SMC driving controller are used together.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.