Abstract

The primary aim of this study was to examine the role of cue utilization in the initial acquisition of psycho-motor skills. Two experiments were undertaken, the first of which examined the relationship between cue utilization typologies and levels of accuracy following four simulated, power-off landing trials in a light aircraft simulator. The results indicated that higher levels of cue utilization were associated with a greater level of landing accuracy following training exposure. In the second study, participants’ levels of cue utilization were assessed prior to two 15 min periods during which they practiced take-offs and landings using a simulated unmanned aerial vehicle (UAV). Consistent with Study 1, the outcomes of Study 2 revealed a statistically significant relationship among levels of cue utilization and the number of trials to criterion on the take-off task, and the proportion of successful trials during both take-off and landing. In combination, the results suggest that the capacity for the acquisition and the subsequent utilization of cues is an important predictor of skill acquisition, particularly during the initial stages of the process. The implications for theory and applied practice are discussed.

Highlights

  • Expert performance across a range of environments, including sport, medical diagnosis, and financial decision making, is characterized by rapid, accurate responses, even in highly complex situations (Farrington-Darby and Wilson, 2006; Müller et al, 2006; Sherbino et al, 2012)

  • Cue utilization typologies Prior to detailed analysis, it was necessary to identify the cue utilization typologies that corresponded to relatively higher and lower levels of cue utilization. These typologies were based on the outcomes of the EXPERTise tasks and were employed in this case due to the correspondence with previous methodological approaches to the application of EXPERTise-related outcomes (Loveday et al, 2013b,c; Loveday and Wiggins, 2014; Wiggins et al, 2014)

  • Two typologies were identified with centroids that corresponded to: (a) a lower response latency in the feature identification task, and higher variance in the paired association and feature discrimination tasks, and (b) a greater response latency in the feature identification task, and lower variance in the paired association and feature discrimination tasks

Read more

Summary

Introduction

Expert performance across a range of environments, including sport, medical diagnosis, and financial decision making, is characterized by rapid, accurate responses, even in highly complex situations (Farrington-Darby and Wilson, 2006; Müller et al, 2006; Sherbino et al, 2012). Since this level of performance is generally acquired over extensive periods of exposure, there is an assumption that the capacity for sustained, high-levels of performance derives from the gradual development of highly specialized associations or routines that are subsequently retained in memory (Ericsson and Lehmann, 1996; Ericsson and Towne, 2010). It ensures that cognitive resources are available to enable both the acquisition of additional skills, and the refinement of those skills that have already been acquired

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.