Abstract

Radial basis function (RBF) kernels are widely used for support vector machines. But for model selection, we need to optimize the kernel parameter and the margin parameter by time-consuming cross validation. To solve this problem, in this paper we propose using Mahalanobis kernels, which are generalized RBF kernels. We determine the covariance matrix for the Mahalanobis kernel using the training data corresponding to the associated classes. Model selection is done by line search. Namely, first the margin parameter is optimized and then the Mahalanobis kernel parameter is optimized. According to the computer experiments for two-class problems, a Mahalanobis kernel with a diagonal covariance matrix shows better generalization ability than a Mahalanobis kernel with a full covariance matrix, and a Mahalanobis kernel optimized by line search shows comparable performance with that with an RBF kernel optimized by grid search.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.