Abstract

Sparsely connected Multi-Layer Perceptrons (MLPs) differ from conventional MLPs in that only a small fraction of entries in their weight matrices are nonzero. Using sparse matrix-vector multiplication algorithms reduces the computational complexity of classification. Training of sparsely connected MLPs is achieved in two consecutive stages. In the first stage, initial values for the network's parameters are given by the solution to an unsupervised matrix factorization problem, minimizing the reconstruction error. In the second stage, a modified version of the supervised backpropagation algorithm optimizes the MLP's parameters with respect to the classification error. Experiments on the MNIST database of handwritten digits show that the proposed approach achieves equal classification performance compared to a densely connected MLP while speeding-up classification by a factor of seven.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.