Abstract
Batch normalization (BN) enables us to train various deep neural networks faster. However, the training accuracy will be significantly influenced with the decrease of input mini-batch size. To increase the model accuracy, a global mean and variance among all the input batch can be used, nevertheless communication across all devices is required in each BN layer, which reduces the training speed greatly. To address this problem, we propose progressive batch normalization, which can achieve a good balance between model accuracy and efficiency in multiple-GPU training. Experimental results show that our algorithm can obtain significant performance improvement over traditional BN without data synchronization across GPUs, achieving up to 18.4% improvement on training DeepLab for semantic segmentation task across 8 GPUs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.