Abstract
Trading Places-Switching Frataxin Function by a Single Amino Acid Substitution within the [Fe-S] Cluster Assembly Scaffold.
Highlights
The eukaryotic Nfs L-cysteine desulfurase requires an additional subunit, Isd11 [5], for basal activity, but the bacterial ortholog IscS does not [6]. Another difference in prokaryotic versus eukaryotic [Fe-S] cluster assembly that has confounded the research community involves the role of a protein called Frataxin [7,8]
In contrast to the important function of Yfh1 in yeast, complete loss of the bacterial ortholog, CyaY, does not exhibit a profound phenotype [10,11]. These apparently contradictory results were reconciled by biochemical analyses obtained using in vitro IscS-IscU or Nfs-Isd11-Isu directed [Fe-S] cluster assembly
A second approach that provided further evidence on the correlation between Yfh1 dependence and the Isu Met141 residue involved heterologous expression of the E. coli IscU in a yeast Yfh1 depletion strain
Summary
Two central players involved in biological [Fe-S] cluster formation include an L-cysteine desulfurase (designated IscS in bacteria or Nfs1 in eukaryotes) and an assembly scaffold (designated IscU in bacteria or Isu in eukaryotes). Given the early evolutionary emergence of [Fe-S] clusters, as well as their critical metabolic function, it is not surprising that the primary structures and mechanistic features of the IscS/Nfs and IscU/Isu orthologs are conserved throughout nature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.