Abstract
Abstract The Heisenberg uncertainty relation, together with Robertson’s generalisation, serves as a fundamental concept in quantum mechanics, showing that noncommutative pairs of observables cannot be measured precisely. In this study, we explore the Robertson-type uncertainty relations to demonstrate their effectiveness in establishing a series of thermodynamic uncertainty relations and quantum speed limits in open quantum dynamics. The derivation utilises a scaled continuous matrix product state representation that maps the time evolution of the quantum continuous measurement to the time evolution of the system and field. Specifically, we consider the Maccone–Pati uncertainty relation, a refinement of the Robertson uncertainty relation, to derive thermodynamic uncertainty relations and quantum speed limits. These newly derived relations, which use a state orthogonal to the initial state, yield bounds that are tighter than previously known bounds. Moreover, we consider the Robertson–Schrödinger uncertainty, which extends the Robertson uncertainty relation. Our findings not only reinforce the significance of the Robertson-type uncertainty relations, but also expand its applicability in identifying uncertainty relations in open quantum dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics A: Mathematical and Theoretical
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.