Abstract

Unmanned aerial vehicles (UAVs) are prone to losing their targets when tracking moving objectives. A tracking strategy is proposed herein that enables the standoff tracking of a moving target using a vision system, which significantly reduces the occurrence of target loss. The strategy combines the Gimbal Control Algorithm based on Motion Compensation (GCAMC) with the Improved Reference Point Guidance Method (IRPGM). The GCAMC utilizes the attitude of the UAV and the deviation of the target from image center as the feedback. The target can be kept within the field-of-view (FOV) of the camera when the gimbal model is unknown. The IRPGM generates straight or circular paths according to the speed and potition of the target, while the UAV will continuously track the generated trajectory to achieve the objective of target tracking. To validate and demonstrate the tracking performance of the proposed strategy, a closed-loop visual simulation platform was devised and implemented to simulate the process of target tracking. The results of the simulation demonstrate that by using the proposed approach, the UAV can enter the desired trajectory quickly when its initial position and flight direction are arbitrary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.