Abstract

The SHiP-charm experiment is designed to measure the charm production cross section, including cascade production, of 400 GeV/c protons hitting a thick, SHiP-like target. For the detection of production and decay of heavy charmed particles, emulsion films are employed in a multilayered moving target, forming an emulsion cloud chamber. While the emulsion films provide excellent spatial resolution they do not provide timing information, integrate all events, and quickly get saturated. For the charm measurement the emulsion target is thus moving at a constant speed during data-taking. A first optimization run at the CERN SPS has been performed in 2018, with the purpose to develop the required analysis tools and to fine-tune the detector layout. We report on the experiment design, track reconstruction in the pixel tracker and the track matching with the moving emulsion detector.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.