Abstract

The rate-determining step of ethanol photocatalytic oxidation was identified to be the adsorption of O(2) by an infrared (IR) spectroscopy coupled with mass spectrometry method. Dosing O(2) during reaction showed that adsorption of O(2) controls the accumulation of photogenerated electrons and the formation of acetate (CH(3)COO(-)(ad)), acyl species (CH(3)CO(ad)), acetaldehyde (CH(3)CHO(ad)), CO(2), and H(2)O. Accumulation of CH(3)COO(-)(ad) on the TiO(2) surface slowed down the conversion of ethanol to CO(2) and H(2)O. Removal of CH(3)COO(-)(ad) from the TiO(2) surface holds the key to accelerating the rate of ethanol photocatalytic oxidation. This study bridges the gap between results of nanosecond and millisecond transient absorption studies and those of minute scale photocatalytic oxidation studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.