Abstract
The paper presents unique results of studying the composition of the ground ice (major components, trace elements, and rare earth elements — REEs) encountered at a depth of 200–250m in sedimentary and magmatic rocks in the Western Yakutia diamond-bearing regions. In addition to those established earlier, three new geochemical types of ground ice have been defined: (i) sulfate-hydrocarbonate, (ii) chloride-hydrocarbonate, and (iii) sulfate-chloride types with mixed cation composition. The ground ice geochemical features are caused by evolutionary processes of interaction in the water–rock system during permafrost formation. The enclosed rocks were the source for the addition of sulfate and chlorine ions, as well as trace elements, to the ground waters of the active water exchange zone that had existed before freezing. The distribution pattern of REEs in ground ice has a special form distinct from that of sedimentary rocks, kimberlites, and ocean waters, but similar to the REE pattern in local river waters. This REE pattern features the positive europium (Eu) anomaly and approximate equality of light and heavy REEs. The obtained results essentially expand the insight into ice-formation processes in sedimentary and magmatic rocks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.