Abstract

The adsorption and reaction of the isomers nitromethane (CH 3NO 2) and methyl nitrite (CH 3ONO) on two ordered Sn/Pt(111) surface alloys were studied using TPD, AES, and LEED. Even though the Sn–O bond is stronger than the Pt–O bond and Sn is more easily oxidized than Pt, alloying with Sn reduces the reactivity of the Pt(111) surface for both of these oxygen-containing molecules. This is because of kinetic limitations due to a weaker chemisorption bond and an increased activation energy for dissociation for these molecules on the alloys compared to Pt(111). Nitromethane only weakly adsorbs on the Sn/Pt(111) surface alloys, shows no thermal reaction during TPD, and undergoes completely reversible adsorption under UHV conditions. Methyl nitrite is a much more reactive molecule due to the weak CH 3O–NO bond, and most of the chemisorbed methyl nitrite decomposes below 240 K on the alloy surfaces to produce NO and a methoxy species. Surface methoxy is a stable intermediate until ∼300 K on the alloys, and then it dehydrogenates to evolve gas phase formaldehyde with high selectivity against complete dehydrogenation to form CO on both alloy surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.