Abstract
The intestinal mucosa plays an important role in the mechanical barrier against pathogens. During Toxoplasma gondii infection, however, the parasites invade the epithelial cells of the small intestine and initiate a local immune response. In the submucosal plexus, this response promotes an imbalance of neurotransmitters and induces neuroplasticity, which can change the integrity of the epithelium and its secretory function. This study evaluated the submucosal neurons throughout acute T. gondii infection and the relationship between possible alterations and the epithelial and immune defense cells of the mucosa. Forty Wistar rats were randomly assigned to 8 groups (n=5): 1 control group, uninfected, and 7 groups infected with an inoculation of 5000 sporulated T. gondii oocysts (ME-49 strain, genotype II). Segments of the ileum were collected for standard histological processing, histochemical techniques, and immunofluorescence. The infection caused progressive neuronal loss in the submucosal general population and changed the proportion of VIPergic neurons throughout the infection periods. These changes may be related to the observed reduction in goblet cells that secret sialomucins and increase in intraepithelial lymphocytes after 24hours, and the increase in immune cells in the lamina propria after 10days of infection. The submucosa also presented fibrogenesis, characterizing injury and tissue repair. The acute T. gondii infection in the ileum of rats changes the proportion of VIPergic neurons and the epithelial cells, which can compromise the mucosal defense during infection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.