Abstract

Toxicogenomics is a novel approach integrating the expression analysis of thousands of genes (transcriptomics) or proteins (proteomics) with classical methods in toxicology. Effects at the molecular level are related to pathophysiological changes of the organisms, enabling detailed comparison of mechanisms and early detection and prediction of toxicity. This report addresses the value of the combined use of transcriptomics and proteomics technologies in toxicology. Acute hepatotoxicity was induced in rats by bromobenzene administration resulting in depleted glutathione levels and reduced average body weights, 24 hr after dosage. These physiological symptoms coincided with many changes of hepatic mRNA and protein content. Gene induction confirmed involvement of glutathione- S-transferase isozymes and epoxide hydrolase in bromobenzene metabolism and identified many genes possibly relevant in bromobenzene toxicity. Observed glutathione depletion coincided with induction of the key enzyme in glutathione biosynthesis, γ-glutamylcysteine synthetase. Oxidative stress was apparent from strong upregulation of heme oxygenase, peroxiredoxin 1 and other genes. Bromobenzene-induced protein degradation was suggested from two-dimensional gel electrophoresis, upregulated mRNA levels for proteasome subunits and lysosomal cathepsin L, whereas also genes were upregulated with a role in protein synthesis. Both protein and gene expression profiles from treated rats were clearly distinct from controls as shown by principal component analysis, and several proteins found to significantly change upon bromobenzene treatment were identified by mass spectrometry. A modest overlap in results from proteomics and transcriptomics was found. This work indicates that transcriptomics and proteomics technologies are complementary to each other and provide new possibilities in molecular toxicology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.