Abstract

Intensified disinfection of wastewater during the COVID-19 pandemic increased the release of toxic disinfection by-products (DBPs). However, studies relating to the ecological impacts of DBPs on the aquatic environment remain insufficient. In this study, we comparatively investigated the toxicities and ecological risks of 17 typical, halogenated DBPs to three trophic levels of organisms in the freshwater ecosystem, including phytoplankton (Scenedesmus sp.), zooplankton (Daphnia magna), and fish (Danio rerio). Toxicity of DBPs was found to be species-specific: Scenedesmus sp. was the most sensitive to haloacetic acids, while D. magna was the most sensitive to haloacetonitriles and trihalomethanes. Specific to each DBP, toxicities were also related to their classes and substituted halogen atoms. Damage to photosystems and oxidative stress served as the potential mechanisms for DBPs toxicity to microalgae. The different sensitivities to DBPs indicate that a battery of bioassays with organisms at different trophic levels is necessary to determine the ecotoxicity of DBPs. Furthermore, the ecological risks of DBPs were assessed by calculating the risk quotients (RQs) based on toxicity data from multiple bioassays. The cumulative RQs of DBPs to all the organisms were greater than 1.0, indicating high ecological risks of DBPs in wastewater effluents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.