Abstract
Fish egg poisoning is a serious and neglected public menace that kills hundreds of people and numerous poultry each year. Freshwater groupers (Acrossocheilus fasciatus) are common food fish in the southeastern regions of China. Their toxic eggs are regarded as a significant public health concern. The molecular mechanisms of egg-toxin toxicity in freshwater grouper to poisoned organisms are elusive. In this study, black-boned chicks were exposed to toxic eggs from freshwater grouper at a lethal dose. The hepatic morphology of the intoxicated chick was assessed. An analysis of the liver gene expression profile was conducted by comparing samples exposed to toxic eggs with control samples using RNA-Seq. The result revealed that an increase in vacuolation and congestion was observed in chicks with toxic eggs exposure. The transcriptome analysis revealed 5421 genes with differential expression, comprising 2810 up-regulated and 2611 down-regulated genes. The genes were primarily linked to energy metabolism, cell apoptosis, cell adhesion, exogenous microbial infection, and cell junction. The most strongly upregulated genes were cholecystokinin (CCK), cholecystokinin A receptor (CCKAR), and unc-80 homolog, NALCN activator (UNC80), and the most downregulated genes were glycine amidinotransferase (GATM), fatty acid desaturase 2 (FADS2), and hexokinase 2 (HKDC1). GO term with the highest enrichment of DEGs is nucleosome assembly. According to KEGG pathways, the three most significant metabolic pathways in the liver are DNA replication, retinol metabolism, and steroid biosynthesis. The results could be crucial for comprehending the negative biological impacts of egg-toxin and its toxic mechanisms. The outcome could provide potential biomarkers of egg-toxin exposure in hepatic, which might be useful for manufacturing an antidote to egg-toxin and providing valuable insights for ecotoxicity studies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.