Abstract

BACKGROUND: The most difficult stage in the operation of a tractor with heavy towed objects is the starting mode. This is due to the need to overcome the static friction force, which significantly exceeds the motion friction force. As a solution to this problem, the use of the initial kinetic energy of the tractor, which can develop when using limited elastically deformable towing couplers, can be considered. AIMS: Analysis of efficiency of using elastically deformable towing couplers for a road train with heavy towed objects at the starting mode. METHODS: The analytical research of the developed mathematical model of the initial stage of starting of a road train with elastic couplings was carried out for optimization of properties of these devices with regard to the process efficiency improvement. In order to assess the effectiveness of using elastically deformable towing couplers, the results obtained should be compared with similar results corresponding to absolutely rigid towing couplers. RESULTS: Comparison of displacements, velocities and energies testifies to the high efficiency of the elastically deformable towing coupler. The use of elastically deformable towing couplers gives the ability to accumulate the initial kinetic energy of an airfield tractor, which makes it possible to overcome the static friction force and ensure the starting of heavy towed objects. CONCLUSIONS: Comparison of the kinematic and dynamic parameters of the tractor with towed objects for options with completely rigid and elastically deformable towing couplers shows that the efficiency of using the latter increases with an increase in the number of towed objects. Elastically deformable towing couplers can cause oscillations of the tractor-towed objects system. In order to prevent them, the towing couplers must be locked at the time of their greatest deformation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.