Abstract
Developing embedded systems tailored for resource-constrained platforms enables the design of robust frameworks for controlling artificial arms in prosthetic applications. This work presents preliminary results of the implementation of a novel platform for EMG-based gesture recognition application based on Hyper dimensional Computing (HDC), a novel brain-inspired classifier. HDC reaches classification accuracy comparable with traditional statistical learning algorithms, while its training phase is one order of magnitude faster, resulting suitable for the implementation on low-power and low-cost digital platforms. The proposed setup acquires EMG data from 8 sensors, performs training in 1.2 s on the embedded microcontroller and classifies 5 gestures with 88% accuracy, a latency of 10ms and energy consumption of just 0.65 mJ per classification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.