Abstract

By mixing elements with favourable nuclear activation properties to create high-entropy alloys, it may be possible to create a material that can withstand a nuclear fusion environment while minimising the radioactive waste produced. Such a material could be used in the extreme thermal and irradiation conditions of a fusion blanket. A suite of previously unexplored V–Cr–Mn and V–Cr–Mn–Ti alloys have been fabricated then homogenised and the resultant microstructures and phases were characterised. Results demonstrate that single-phase body centred cubic solid solution microstructures can be formed in highly-concentrated alloys incorporating low-activation elements, which is promising for a fusion alloy development standpoint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.