Abstract

Abstract In this paper, a systematic approach is presented to (1) collect end-user lighting-related behavior by using immersive virtual environments (IVEs) as an experimental tool, (2) integrate the collected data with building performance simulation (BPS) tools in order to translate behavioral information into quantitative measures (i.e., preferred lux level), and (3) incorporate user preference data for evaluating design alternatives with the objective of meeting end-user lighting preferences while reducing the building lighting-related energy consumption. To evaluate the applicability of this approach, 89 participants' lighting preferences, performance (reading speed and comprehension), personality traits, and environmental views were collected in IVEs. BPS tools were used to translate participants' lighting preferences into quantitative lux distributions, which were then used to evaluate alternative designs and make user-centered design decisions. The results of the experimental study show that participants preferred to have maximum simulated daylighting compared to electric lighting. Additionally, participants with some or maximum levels of simulated daylighting performed significantly better on the assigned reading and comprehension tasks than those that did not have any simulated daylighting available. Lastly, by collecting participant personality traits, it was observed that extroverts are significantly more likely to prefer maximum lighting (maximum electric lighting and simulated daylighting) compared to other people. To demonstrate how the collected data and results could be used during the design phase of buildings, as one example, a design case study is presented, in which the design of the same office space (as the experiment) is improved to meet participants' lighting preferences and increase the available simulated daylighting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.