Abstract

Current robotic exoskeletons enforce fixed reference joint patterns during gait rehabilitation. These control methods aim to replicate normative joint kinematics but do not facilitate learning patient-specific kinematics. Trajectory-free control methods for exoskeletons are required to promote user control over joint kinematics. Our prior work on potential energy shaping provides virtual body-weight support through a trajectory-free control law, but altering only the gravitational forces does not assist the subject in accelerating/decelerating the body forward. Kinetic energy is velocity dependent and thus shaping the kinetic energy in addition to potential energy can yield greater dynamical changes in closed loop. In this paper, we generalize our previous work to achieve underactuated total energy shaping of the human body through a lower-limb exoskeleton. By shaping the fully-actuated part of the body's mass matrix, we satisfy the matching condition for different contact phases and obtain trajectory-free control laws. Simulations of a human-like biped demonstrate speed regulation in addition to body-weight support, indicating the potential clinical value of this control approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.