Abstract
As the demand for powerful, light energy sources continues to grow, traditional electrochemical batteries are no longer sufficient and combustion-based power generation devices have become an attractive alternative due to their high energy density, compact size, fast recharging time and long service life. While most research on miniature-scale combustors has focused on gaseous fuels, the use of commonly available liquid fuels has the potential to be highly portable and economical. However, the complexity of droplet atomization, evaporation, mixing and burning in a limited volume and short residence time has presented significant challenges for researchers. This review focuses on various methodologies proposed by researchers (like flow burring injector, fuel film injection, injecting into porous media, electrospray and some self-aspirating designs) to overcome these challenges, the combustion behaviour and different instabilities associated with liquid fuels at small scales. The current review intends to present a clear direction to channel the efforts made by researchers to overcome the difficulties associated with liquid fuel combustion at small scales for power generation applications. Additionally, this review aims to give an overview of power systems at the micro and meso scales that operate using liquid fuels. The methodologies introduced like electrospray requires external power, which again makes the system complex. Towards the development of standalone type power generators, the self-aspirating design which makes use of hydrostatic pressure, fuel film injection or taking advantage of exhaust gas enthalpy to preheat and evaporate the liquid fuel are the promising methodologies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.