Abstract
Capsule Neural Networks (CapsNets) have been re-introduced as a more compact and interpretable alternative to standard deep neural networks. While recent efforts have proved their compression capabilities, to date, their interpretability properties have not been fully assessed. Here, we conduct a systematic and principled study towards assessing the interpretability of these types of networks. We pay special attention towards analyzing the level to which part-whole relationships are encoded within the learned representation. Our analysis in the MNIST, SVHN, CIFAR-10, and CelebA datasets on several capsule-based architectures suggest that the representations encoded in CapsNets might not be as disentangled nor strictly related to parts-whole relationships as is commonly stated in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.