Abstract

We present investigations of the fin-shaped GaN/AlGaN field effect transistors with two lateral Schottky barrier gates exactly placed on the edges of the fin-shaped transistor channel. We call this kind of FinFET modification the EdgeFET. It allowed us to efficiently control the current flow in two-dimensional electron gas conduction channel. We present experimental data of sub-THz detection by EdgeFETs. Control of the side gates allows changing the width of two-dimensional electron gas and forming a wire, as we expect should be beneficial for observation of terahertz plasma wave resonances. This paves the way towards future terahertz optopair using high-quality factor plasma wave resonances, for which it is necessary to eliminate oblique modes. We report also on the high-voltage, noise, and radio frequency (RF) performances of aluminium gallium nitride/gallium nitride (AlGaN/GaN) on silicon carbide (SiC) devices without any GaN buffer. Such a GaN–SiC hybrid material was developed in order to improve thermal management and to reduce trapping effects should be beneficial for observation of resonant emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.