Abstract

A highly anticipated application for quantum computers is as a universal simulator of quantum many-body systems, as was conjectured by Richard Feynman in the 1980s. The last decade has witnessed the growing success of quantum computing for simulating static properties of quantum systems, i.e., the ground state energy of small molecules. However, it remains a challenge to simulate quantum many-body dynamics on current-to-near-future noisy intermediate-scale quantum computers. Here, we demonstrate successful simulation of nontrivial quantum dynamics on IBM's Q16 Melbourne quantum processor and Rigetti's Aspen quantum processor; namely, ultrafast control of emergent magnetism by THz radiation in an atomically-thin two-dimensional material. The full code and step-by-step tutorials for performing such simulations are included to lower the barrier to access for future research on these two quantum computers. As such, this work lays a foundation for the promising study of a wide variety of quantum dynamics on near-future quantum computers, including dynamic localization of Floquet states and topological protection of qubits in noisy environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.