Abstract

In recent years, great efforts have been made to analyze biological systems to understand the long-run behaviors. As a well-established formalism for modelling real-life biological systems, Boolean networks (BNs) allow their representation and analysis using formal reasoning and tools. Most biological systems are robust-they can withstand the loss of links and cope with external environmental perturbations. Hence, the BNs used to model such systems are necessarily large and dense, and yet modular. However, existing analysis methods only work well on networks of moderate size. Thus, there is a great need for efficient methods that can handle large-scale BNs and for doing so it is inevitable to exploit both the structural and dynamic properties of the networks. In this paper, we propose a method towards the optimal decomposition of BNs to balance the relation between the structure and dynamics of a network. We show that our method can greatly improve the existing decomposition-based attractor detection by analyzing a number of large real-life biological networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.