Abstract

In Network Function Virtualization (NFV), to satisfy the Service Functions (SFs) requested by a customer, service providers will composite a Service Function Chain (SFC) and embed it onto the shared Substrate Network (SN). For many latency-sensitive and computing-intensive applications, the customer forwards data to the cloud/server and the cloud/server sends the results/models back, which may require different SFs to handle the forward and backward traffic. The SFC that requires different SFs in the forward and backward directions is referred to as hybrid SFC (h-SFC). In this paper, we, for the first time, comprehensively study how to optimize the latency in Hybrid SFC composition and Embedding (HSFCE). When each substrate node provides only one unique SF, we prove the NP-hardness of HSFCE and propose the first 2-approximation algorithm to jointly optimize the processes of h-SFC construction and embedding, which is called Eulerian Circuit based Hybrid SFP optimization (EC-HSFP). When a substrate node provides various SFs, we extend EC-HSFP and propose the efficient Betweenness Centrality based Hybrid SFP optimization (BC-HSFP) algorithm. Our extensive simulations and analysis show that EC-HSFP can hold the 2-approximation, while BC-HSFP outperforms the algorithms directly extended from the state-of-art techniques by an average of 20%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.