Abstract

Data trustworthiness (i.e., the data is free from error, up to date, and originate from a reputable source) is always preferred. However, due to environmental influence (i.e., equipment faults, noises, or security attacks) and technology limitation a wireless sensor/sensors module can neither store/process all raw data locally nor reliably forward the data to a destination in heterogeneous IoT environment. As a result, the sensing data collected by IoT/Cyber-Physical System (CPS) is inherently noisy, unreliable, and may trigger many false alarms. These false or misleading data can lead to wrong decisions once the data reaches end entities/cloud. Therefore, it is highly recommended and desirable to identify trustworthy data before data transmission, aggregation, and data storing at the end entities/cloud. In this paper, we propose an In-network Generalized Trustworthy Data Collection (IGTDC) framework for collaborative IoT environment. The key idea of IGTDC is to allow a sensor’s module to check whether or not the raw/sense data is reliable before routing to the sink/edge node. It also identifies whether the received data is trustworthy or not before aggregation at sink/edge node. Besides, IGTDC facilitates to identify a faulty sensor. For a reliable event detection in real-time without waiting for a trust report from the end entities/cloud, we use collaborative IoT, and gate-level modeling with Verilog User Defined Primitive (UDP) to make sure that the collected data/event information is reliable before sending to end entities/cloud. We use BCD 8421 (Binary Coded Decimal) in gate-level modeling as a flag which assists in identifying a faulty or compromise sensor. Through simulations with Verilog Icarus, we demonstrate that the collected data in IGTDC is trustworthy that can make trustworthy data aggregation for event detection and help to identify a faulty sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.