Abstract
A three dimensional parallel implementation of Multiscale Mixed Methods based on non-overlapping domain decomposition techniques is proposed for multi-core computers and its computational performance is assessed by means of numerical experiments. As a prototypical method, from which many others can be derived, the Multiscale Robin Coupled Method is chosen and its implementation explained in detail. Numerical results for problems ranging from millions up to more than 2 billion computational cells in highly heterogeneous anisotropic rock formations based on the SPE10 benchmark are shown. The proposed implementation relies on direct solvers for both local problems and the interface coupling system. We find good weak and strong scalalability as compared against a state-of-the-art global fine grid solver based on Algebraic Multigrid preconditioning in single and two-phase flow problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.